Persistent phosphorylation parallels long-term desensitization of cerebellar purkinje cell AMPA-type glutamate receptors.

نویسندگان

  • K Nakazawa
  • S Mikawa
  • M Ito
چکیده

This study is aimed at testing the hypothesis that sustained phosphorylation underlies long-term desensitization of AMPA receptors, which is thought to be the mechanism of long-term synaptic depression in cerebellar Purkinje cells (PCs). We induced long-term desensitization of AMPA receptors in rat cerebellar slices by (1) a 4-min bath application of quisqualate (0.1 mM) or (2) a 15-min bath application of a protein kinase C (PKC) activator, phorbol-12,13-diacetate (0.5 microM) or -dibutyrate (0.6 microM), followed by a 4-min AMPA (0.1 mM) application. In slices so treated, labeling with an antibody (12P3) against a peptide corresponding to part of AMPA receptor subunit GluR2 including serine 696 and phosphorylated at this serine site revealed phosphorylation of the AMPA receptors in PC dendrites that was sustained for at least 1 hr. At an early phase, within 20 min after the chemical stimulation, the phosphorylation was resistant to an Ca2+ chelator (BAPTA-AM), a metabotropic glutamate receptor antagonist (MCPG), and a PKC inhibitor (calphostin C), whereas at a late phase, 30 min or more after the chemical stimulation, it was blocked by these reagents similarly to long-term desensitization of AMPA receptors. Taken together with data obtained previously using different protocols of chemical stimulation, the present results strongly support the above-mentioned hypothesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AMPA receptor desensitization predicts the selective vulnerability of cerebellar Purkinje cells to excitotoxicity.

Cerebellar Purkinje cells are selectively vulnerable to ischemia, although the reasons for this are unknown. In cultured embryonic rat cerebellar neurons, the steady state responses to the desensitizing agonist AMPA relative to responses to the nondesensitizing agonist kainate were greater in Purkinje cells compared to other cells, as measured by whole cell voltage clamp studies. Fluorimetric [...

متن کامل

The expression of cerebellar LTD in culture is not associated with changes in AMPA-receptor kinetics, agonist affinity, or unitary conductance.

Cerebellar long-term synaptic depression (LTD) is a model system of neuronal information storage that is expressed postsynaptically as a functional down-regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. What properties of postsynaptic AMPA receptors are changed? Several lines of evidence argue against changes in AMPA-receptor kinetics. Neither LTD evoked i...

متن کامل

Transient and persistent phosphorylation of AMPA-type glutamate receptor subunits in cerebellar Purkinje cells

We generated a polyclonal antibody, 12P3, specifically recognizing rat AMPA-type glutamate receptor (GluR) subunits phosphorylated at Ser-696 of GluR2 or at the homologous sites in GluR1, GluR3, and GluR4. Using 12P3, we demonstrate that a brief exposure of a rat cerebellar slice to AMPA leads to transient phosphorylation of the GluR subunits in Purkinje cell dendrites. Persistent phosphorylati...

متن کامل

The glutamate receptor-interacting protein family of GluR2-binding proteins is required for long-term synaptic depression expression in cerebellar Purkinje cells.

Glutamate receptor-interacting protein 1 (GRIP1) and GRIP2 are closely related proteins that bind GluR2-containing AMPA receptors and couple them to structural and signaling complexes in neurons. Cerebellar long-term synaptic depression (LTD) is a model system of synaptic plasticity that is expressed by persistent internalization of GluR2-containing AMPA receptors. Here, we show that genetic de...

متن کامل

Long-Term Potentiation of Neuronal Glutamate Transporters

Persistent, use-dependent modulation of synaptic strength has been demonstrated for fast synaptic transmission mediated by glutamate and has been hypothesized to underlie persistent behavioral changes ranging from memory to addiction. Glutamate released at synapses is sequestered by the action of excitatory amino acid transporters (EAATs) in glia and postsynaptic neurons. So, the efficacy of gl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Learning & memory

دوره 3 6  شماره 

صفحات  -

تاریخ انتشار 1997